ISSN 1399-0047

Received 30 July 2015
Accepted 14 September 2015

Edited by Z. S. Derewenda, University of Virginia, USA
\neq GB, JMJ and GLE co-wrote this manuscript, contributed equally to this work and are co-first authors.
§ Current address: School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.

- Current address: Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5489, USA. $\ddagger \ddagger$ Current address: Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, 17177 Stockholm, Sweden.

Keywords: Mycobacterium tuberculosis; tryptophan biosynthesis; anthranilate synthase complex; inhibitor design.

PDB reference: anthranilate synthase subunit I, 5cwa

Supporting information: this article has supporting information at journals.iucr.org/d

(C) 2015 International Union of Crystallography

Structure and inhibition of subunit I of the anthranilate synthase complex of Mycobacterium tuberculosis and expression of the active complex

Ghader Bashiri, ${ }^{\mathrm{a}, \mathrm{b}} \neq$ Jodie M. Johnston, ${ }^{\mathrm{a}, \mathrm{b}} \neq$ Genevieve L. Evans, ${ }^{\mathrm{a}, \mathrm{b}} \neq \S$ Esther M. M. Bulloch, ${ }^{\text {a,b }}$ David C. Goldstone, ${ }^{\text {a,b }}$ Ehab N. M. Jirgis, ${ }^{\text {a }}$ Silke Kleinboelting, ${ }^{\text {a,b }}{ }^{\text {, }}$ | Alina Castell, ${ }^{\text {a,b }} \neq \mp$ Rochelle J. Ramsay, ${ }^{\text {a,b }}$ Alexandra Manos-Turvey, ${ }^{\text {c }}$ Richard J. Payne, ${ }^{\text {c }}$ J. Shaun Lott ${ }^{\mathrm{a}, \mathrm{b} *}$ and Edward N. Baker ${ }^{\mathrm{a}, \mathrm{b} *}$

aschool of Biological Sciences, University of Auckland, 3a Symonds Steet, Private Bag 90210, Auckland 1142, New Zealand, ${ }^{\mathbf{b}}$ Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 3a Symonds Steet, Private Bag 90210, Auckland 1142, New Zealand, and ${ }^{\text {c }}$ School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. *Correspondence e-mail: s.lott@auckland.ac.nz, ted.baker@auckland.ac.nz

The tryptophan-biosynthesis pathway is essential for Mycobacterium tuberculosis (Mtb) to cause disease, but not all of the enzymes that catalyse this pathway in this organism have been identified. The structure and function of the enzyme complex that catalyses the first committed step in the pathway, the anthranilate synthase (AS) complex, have been analysed. It is shown that the open reading frames Rv1609 (trpE) and Rv0013 (trpG) encode the chorismate-utilizing (AS-I) and glutamine amidotransferase (AS-II) subunits of the AS complex, respectively. Biochemical assays show that when these subunits are co-expressed a bifunctional AS complex is obtained. Crystallization trials on Mtb-AS unexpectedly gave crystals containing only AS-I, presumably owing to its selective crystallization from solutions containing a mixture of the AS complex and free AS-I. The three-dimensional structure reveals that Mtb-AS-I dimerizes $v i a$ an interface that has not previously been seen in AS complexes. As is the case in other bacteria, it is demonstrated that $M t b$-AS shows cooperative allosteric inhibition by tryptophan, which can be rationalized based on interactions at this interface. Comparative inhibition studies on Mtb-AS-I and related enzymes highlight the potential for single inhibitory compounds to target multiple chorismate-utilizing enzymes for TB drug discovery.

1. Introduction

Tuberculosis (TB) remains one of the world's deadliest bacterial diseases, killing more people annually than any other infectious disease (Zumla et al., 2013). The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (Mtb), the causative agent of TB, together with complications from coinfection with HIV/AIDS, demands the urgent development of new and effective anti-TB agents that have novel modes of action (Zumla et al., 2013). Amino-acid biosynthesis pathways are attractive targets where pathogenic bacteria have significantly reduced access to amino acids, or their intermediary metabolites, from their human host, as is the case for pathogens with an intracellular lifestyle such as Mtb (Zhang \& Rubin, 2013). While in the macrophage phageosome, Mtb has significantly restricted access to many nutrients, including key amino acids such as tryptophan and methionine (Zhang \& Rubin, 2013; Berney et al., 2015)

The tryptophan (Trp)-biosynthesis pathway is one such target in $M t b$. Strains of $M t b$ that are auxotrophic for Trp show reduced intracellular survival in murine and human macrophages in vitro and are avirulent in immunocompetent and immunocompromised mice. This demonstrates that although Trp biosynthesis is not essential for in vitro growth, it is conditionally essential for the establishment and maintenance of infection (Smith et al., 2001; Zhang et al., 2013). This, combined with the lack of Trp biosynthesis in mammals, makes the pathway a tractable target for new anti-TB therapies. The Trp-biosynthesis pathway is conserved in mycobacterial species from the nonpathogenic M. smegmatis to the pathogens Mtb and M. leprae. Significantly, M. leprae has retained the Trp-biosynthetic pathway (Xie et al., 2003) despite possessing a minimal mycobacterial genome (Cole et al., 2001). These factors point to the importance and essentiality of the Trp-biosynthesis pathway in mycobacterial species and its potential as a target for new TB drugs. This is emphasized by the recent observation that 6-fluoroanthranilate, an orally effective antimycobacterial compound in a mouse model of TB, targets the Trp-biosynthetic pathway (Zhang et al., 2013).

Trp is synthesized from chorismate, the final product of the shikimate pathway (Kerbarh, Bulloch et al., 2005). Chorismate is also a common precursor for other aromatic amino acids and metabolites such as folic acid, salicylic acid, menaquinone (vitamin K_{2}) and ubiquinone (coenzyme Q). In Escherichia coli, the Trp-biosynthetic pathway requires seven enzymes, the genes for which are organized as a whole-pathway operon (trpEGDFCBA; Xie et al., 2003). In contrast, in mycobacteria the Trp-biosynthesis genes are organized as a split-pathway operon (Xie et al., 2003). In Mtb H37Rv, trpE (Rv1609), trpC (Rv1611), $\operatorname{trp} B(\mathrm{Rv} 1612)$ and $\operatorname{trp} A(\mathrm{Rv} 1613)$ form a partialpathway operon, with the $\operatorname{trp} F$ gene (Rv1603) just upstream as part of the neighbouring his operon (Barona-Gómez \& Hodgson, 2003; Due et al., 2011). The trpD (Rv2192c) gene is located remotely (Lee et al., 2006). The $\operatorname{trp} G$ gene, which in other organisms encodes the amidotransferase component of anthranilate synthase (AS), is the only gene from the Trpbiosynthetic pathway that has not been characterized in Mtb to date.

AS catalyses the first committed reaction in the Trpbiosynthetic pathway. It comprises two distinct functional components: AS-I (TrpE) and AS-II (TrpG). AS-I catalyses the production of anthranilate from chorismate and ammonia through a 2-amino-2-deoxyisochorismate (ADIC) intermediate (Morollo et al., 1993), whereas the glutamine amidotransferase (GAT) activity of AS-II provides ammonia from glutamine (Mouilleron \& Golinelli-Pimpaneau, 2007; Fig. 1a). Depending on the organism, AS-II either forms hetero-oligomers with AS-I (i.e. dimers or tetramers) or exists as a single fused polypeptide with AS-I (Ashenafi et al., 2008; Romero et al., 1995). The AS complex is key to the regulation of Trp biosynthesis, with most of the characterized AS enzymes being allosterically inhibited by the end product of the pathway, Trp (Romero et al., 1995).

To date, all structurally characterized AS proteins are from microorganisms in which the genes for AS-I and AS-II are
adjacent to each other in whole-pathway trp operons. Structures have been determined for AS from the thermophile Sulfolobus solfataricus (Sso-AS; Knöchel et al., 1999) and from two mesophiles: Serratia marcescens (Sma-AS; Spraggon et al., 2001) and Salmonella typhimurium (Sty-AS; Morollo \& Eck, 2001). Although these AS complexes have the same 2:2 subunit stoichiometries, their oligomeric associations are different. The mesophilic enzymes (Sma-AS and Sty-AS) associate primarily through dimerization of AS-I (Spraggon et al., 2001; Morollo \& Eck, 2001), whereas in their thermophilic counterpart (Sso-AS) tetramer formation depends almost completely on association of the two AS-II subunits (Knöchel et al., 1999). The reasons for the radically different quaternary structures in different bacteria are not known.

Here, we identify the $M t b-A S-I I$ protein as being encoded by open reading frame (ORF) Rv0013 and show that it has GAT activity and that its complex with AS-I converts chorismate to anthranilate in the presence of glutamine. We have also examined the potency of inhibitors developed for another chorismate-utilizing enzyme, salicylate synthase (SS), including several with a 3-(1-carboxyethenyloxy)-2-hydroxybenzoic acid scaffold (AMT series; Fig. 1b; Manos-Turvey et al., 2010) and have determined the crystal structure of $M t b$-AS-I in the presence of the most potent inhibitor, methyl-AMT. Our results point to new opportunities for structure-based inhibitor design targeting this important metabolic pathway for TB drug lead discovery.

2. Materials and methods

2.1. PCR amplification and cloning

The ORF Rv1609 encoding AS-I (TrpE) was amplified from M. tuberculosis H37Rv genomic DNA and cloned into the pProEX-HTb vector (Invitrogen). The resulting construct, pProEX-TrpE, expresses TrpE protein with an N -terminal His_{6} tag that is cleavable using Tobacco etch virus (TEV) protease. The ORFs Rv0013, Rv0788, Rv1602 and Rv2604c, encoding putative AS-II (TrpG) proteins, were each amplified similarly and cloned into the pYUBDuet vector (Bashiri et al., 2010) for individual expression. These constructs express the corresponding TrpG proteins with a noncleavable N -terminal His_{6} tag.

For AS-I/AS-II co-expression, the $\operatorname{trp} E$ gene was cloned into the pYUBDuet-AS-II constructs. The resulting pYUB-Duet-AS constructs co-express AS-I and AS-II under the control of two separate T7 promoters. The AS-I protein has no tag, allowing the His_{6}-tagged AS-II protein to be used as bait for AS-I during purification. For Rv0013, this co-expression consistently failed to produce viable cells, however, so the coexpression was instead carried out with His_{6}-tagged AS-I and untagged AS-II. To this end, the ORF Rv0013 was cloned into the pYUBDuet vector (Bashiri et al., 2010) and $\operatorname{trp} E$ was subsequently cloned into the pYUBDuet-Rv0013 construct. In this construct, the N-terminal His_{6} tag on the TrpE protein is cleavable using TEV protease. All cloning steps for the pYUBDuet-AS constructs were carried out using E. coli

Top10 (Invitrogen) electrocompetent cells. Positive clones were selected on low-salt LB agar medium supplemented with $50 \mu \mathrm{~g} \mathrm{ml}^{-1}$ hygromycin B and were then verified using colony PCR, restriction digestion and sequencing.

2.2. Protein expression and purification

For the expression of AS-I (TrpE) alone, E. coli BL21 (DE3) cells were transformed with the pProEX-TrpE construct and a resulting positive colony from LB agar plates was grown as a starter culture in 100 ml non-inducing MDG medium overnight before being used to inoculate 101 of autoinduction ZYM-5052 medium (Studier, 2005) for expression. All media were supplemented with ampicillin at $100 \mu \mathrm{~g} \mathrm{ml}^{-1}$. Expression was carried out at $37^{\circ} \mathrm{C}$ for 3 h , followed by incubation at $18^{\circ} \mathrm{C}$ overnight. For expression of the individual AS-II protein candidates and for co-expression of Mtb-AS constructs, M. smegmatis $\mathrm{mc}^{2} 4517$ cells (Wang et al., 2010) were transformed with the appropriate pYUBDuet constructs and the proteins were expressed using autoinduction protocols (Bashiri et al., 2010, Studier, 2005) over 4 d at $37^{\circ} \mathrm{C}$. The identities of all expressed proteins were confirmed by mass spectrometry.

All proteins were purified using similar procedures. The cells were harvested, resuspended in lysis buffer and lysed in a cell disrupter (Microfluidizer M-110P). After centrifugation at 20000 g to separate insoluble material, the recombinant proteins were purified using Ni-NTA immobilized metal-ion chromatography (IMAC; 5 ml , HiTrap column), followed by anion-exchange chromatography (5 ml , QFF column) and sizeexclusion chromatography (SEC; Superdex S200 10/300 column) steps. The His_{6} tag was removed with rTEV protease (Blommel \& Fox, 2007). The final (storage) buffer for AS-I was 50 mM HEPES $\mathrm{pH} 7.8,150 \mathrm{~m} M \mathrm{NaCl}$, $5 \mathrm{~m} M \mathrm{MgCl}_{2}, 2.5 \%(v / v)$ glycerol, $1 \mathrm{~m} M$ TCEP and that for AS was $20 \mathrm{~m} M$ HEPES $\mathrm{pH} 8.0,10 \mathrm{~m} M$ EDTA, $1 \mathrm{~m} M$ TCEP. For biochemical assays of $M t b-A S$, the purification buffers consisted of $150 \mathrm{~m} M \mathrm{NaCl}, 50 \mathrm{~m} M$ glutamine, $\quad 2.5 \mathrm{~m} M$ TCEP, $\quad 5 \mathrm{mM}$ EDTA. Purification involved an IMAC step followed by SEC on the same day. $M t b$-AS was stored in 20 mM HEPES pH 8.0 , $150 \mathrm{~m} M \mathrm{NaCl}, 50 \mathrm{~m} M$ glutamine,
$2.5 \mathrm{~m} M$ TCEP, $5 \mathrm{~m} M$ EDTA, $5 \%(v / v)$ glycerol at $-80^{\circ} \mathrm{C}$. The inclusion of glutamine in all buffers resulted in improved enzyme activity.

2.3. Crystallization and data collection

Initial crystallization conditions for both Mtb-AS-I and Mtb-AS were obtained by sitting-drop vapour diffusion using a Cartesian nanolitre dispensing robot (Genome Solutions) and in-house crystallization screens (Moreland et al., 2005). Optimization by hanging-drop vapour diffusion at $18^{\circ} \mathrm{C}$ gave reproducible crystals in both cases. For Mtb-AS-I the best crystals were obtained by mixing $1 \mu \mathrm{l}$ protein solution (15$23.5 \mathrm{mg} \mathrm{ml}^{-1}, 1 \mathrm{~m} M$ methyl-AMT) with $1 \mu \mathrm{l}$ precipitant solution ($150 \mathrm{~m} M$ trisodium citrate $\mathrm{pH} 5.5,0.75-1.5 \mathrm{M}$ ammonium sulfate, $0.25-0.5 \mathrm{M}$ lithium sulfate). Fine screens were also undertaken, without success, with ethyl-AMT and phenylAMT (at $1 \mathrm{~m} M$; Manos-Turvey et al., 2010). For Mtb-AS, crystals that diffracted to about $3 \AA$ resolution were obtained in $2-3 \mathrm{~d}$ by mixing $1 \mu \mathrm{l}$ protein solution $\left(20 \mathrm{mg} \mathrm{ml}^{-1}, 1 \mathrm{~m} M\right.$ methyl-AMT) with $1 \mu \mathrm{l}$ precipitant solution ($0.6-1.0 \mathrm{M}$ ammonium sulfate, $0.1 M$ bis-tris propane pH 7.0). These

Figure 1
Molecular structures for the enzyme-catalysed reactions and inhibitor compounds. (a) The reaction catalysed by anthranilate synthase (AS) involves the production of ammonia from glutamine by AS component II (AS-II), followed by its utilization by AS component I (AS-I) in the formation of anthranilate from chorismate. The reactions catalysed by AS-I and salicylate synthase (SS) involve the same chorismate substrate, similar enzyme-bound intermediates (in parentheses) and products. (b) Potential inhibitor compounds tested against $M t b-A S$ in this study.

Table 1
Data collection and processing.
Values in parentheses are for the outermost shell.

Wavelength (\AA)	0.8983
Space group	$P 6_{4} 22$
Unit-cell parameters $\left(\AA,^{\circ}\right)$	$a=b=156.41, c=128.38$,
	$\alpha=\beta=90, \gamma=120$
Matthews coefficient $\left(\AA^{3} \mathrm{Da}^{-1}\right)$	4.06
Solvent content $(\%)$	69.7
Resolution (\AA)	$135.45-2.10(2.21-2.10)$
$R_{\text {p.i.m. }}$	$0.034(0.81)$
Unique reflections	$54312(7768)$
Observed reflections	1189598
Mean $I / \sigma(I)$	$14.8(1.1)$
Multiplicity	$21.9(22.4)$
Completeness $(\%)$	$100(99.8)$
CC_I mean (from $S C A L A)$	$0.99(0.44)$
Wilson B factor $\left(\AA^{2}\right)$	48.3

conditions were then optimized, with the best crystals being obtained using additives from the Hampton Research Silver Bullets Bio screen condition G6 (fumaric acid, cis-aconitic acid, DL-isocitric acid trisodium salt, oxalacetic acid, sodium pyruvate and HEPES pH 6.8).

The Mtb-AS-I crystals were cryoprotected with increased concentrations of ammonium and lithium sulfate (1.0 and $1.5 M$, respectively) and 2% ethylene glycol, and were flashcooled in liquid nitrogen. These crystals were hexagonal, space group $P 6_{4} 22$, with unit-cell parameters $a=b=157.2$, $c=127.6 \AA$. Diffraction data were collected to $2.6 \AA$ resolution on a Rigaku MicroMax-007 HF microfocus rotatinganode generator equipped with Osmic optics and a MAR345 image plate and were indexed and processed using $X D S$ (Kabsch, 2010). The crystals grown from Mtb-AS solutions were cryoprotected in 30% glycerol and flash-cooled directly in liquid nitrogen. These proved to be essentially isomorphous to the Mtb-AS-I crystals, with space group $P 6422$ and unit-cell parameters $a=b=156.4, c=128.4 \AA$ compared with $a=b=157.2, c=127.6 \AA$ for the Mtb-AS-I crystals. Diffraction data were collected from these crystals on the Australian Synchrotron MX2 beamline using an ADSC Quantum 315r CCD detector. These data were indexed and processed with XDS (Kabsch, 2010), reindexed with POINTLESS (Evans, 2006) and scaled with SCALA (Evans, 2006) from the CCP4 program suite (Winn et al., 2011). An appropriate diffraction limit of $2.1 \AA$ was chosen using the $\mathrm{CC}_{1 / 2}$ analysis of Karplus \& Diederichs (2012). Data-collection statistics for this data set are given in Table 1.

2.4. Structure determination

An initial structural model for Mtb-AS-I was determined by molecular replacement with Phaser (McCoy et al., 2007), using a search model derived from the Sso-AS structure (PDB entry 1qdl; Knöchel et al., 1999). This structure was refined at $2.6 \AA$ resolution using REFMAC5 (Murshudov et al., 2011) to $R=$ 24% and $R_{\text {free }}=28 \%$. This model was in turn used as a search model to solve the structure of the Mtb-AS crystals by molecular replacement with Phaser. The AS-I component was readily placed, but no solution for the AS-II component could

Table 2
Refinement statistics.
Values in parentheses are for the outermost shell.

PDB code	5 cwa
Resolution range (\AA)	$135.5-2.10(2.16-2.10)$
No. of reflections (working/test)	$51515 / 2767$
$R_{\text {work }} / R_{\text {free }}(\%)$	$20.07 / 25.34(36.1 / 36.6)$
No. of atoms (non-H atoms)	
\quad Protein	3861
\quad Ligand	54
\quad Water	205
R.m.s. deviations from ideality	
\quad Bonds (\AA)	0.012
\quad Angles $\left({ }^{\circ}\right)$	1.5
Average B factors ($\left.\AA^{2}\right)$	
\quad Protein atoms	57.3
\quad Methyl-AMT	52.3
\quad Water molecules	57.6
\quad Other solvent molecules (2 glycerol, 2 sulfate ions)	69.1
Ramachandran most favoured/outliers (\%)	$96.84 / 0.00$
Cruickshank's DPI (\AA)	$0.152\left[R_{\text {work }}\right]$
MolProbity score; percentile	$1.76 ; 92 \mathrm{nd}$

be found. The structure was refined at $2.1 \AA$ resolution, starting with automated model building with $A R P / w A R P$ (Langer et al., 2008) and followed by rounds of manual model building in Coot (Emsley, 2013) and refinement in REFMAC5 (Murshudov et al., 2011) and BUSTER (v.2.11.5; Global Phasing Ltd, Cambridge, England). Additional electron density in the active site was modelled as a molecule of methyl-AMT, for which geometric restraints were generated in Coot from the inbuilt ligand builder LIDIA (Emsley, 2013). Solvent molecules were added based on appropriate shape and hydrogen-bond interactions. Full refinement statistics are given in Table 2, and the atomic coordinates and structurefactor amplitudes have been deposited in the Protein Data Bank as entry 5cwa. All structural figures were produced with PyMOL (Schrödinger, New York, USA).

2.5. Small-angle X-ray scattering (SAXS)

Protein samples for SAXS experiments were extensively dialyzed against $20 \mathrm{~m} M$ HEPES $\mathrm{pH} 8.0,1 \mathrm{~m} M$ EDTA, $1 \mathrm{~m} M$ DTT. This buffer was also used as the buffer control and to dilute protein samples. Scattering curves were collected at concentrations of between 0.045 and $3 \mathrm{mg} \mathrm{ml}^{-1}$. The SAXS experiments were performed on the SAXS beamline at the Australian Synchrotron using a PILATUS 1M detector at 1.6 m camera length, resulting in a q-range of $0.0007-$ $0.0341 \AA^{-1}$. Initial buffer subtraction and data averaging were performed using ScatterBrain (v.1.71; Australian Synchrotron). Scattering curves were normalized against the scattering of water and the molecular mass was estimated from the scattering contrast (Mylonas \& Svergun, 2007). The processed data were then analyzed using the $A T S A S$ package (v.2.5). The radius of gyration $\left(R_{\mathrm{g}}\right)$ was calculated by the Guinier approximation in PRIMUS (Konarev et al., 2003). Pair distribution functions were calculated using GNOM (Svergun, 1992). SAXS experimental scattering curves were compared with theoretical curves calculated from AS-I crystal structures using CRYSOL (Svergun et al., 1995).

2.6. SEC with multi-angle laser light scattering (SEC-MALS)

Protein samples (AS-I or AS with His_{6} tags removed) were loaded onto an S200 10/300 column using an Ultimate 3000 HPLC with inline PSS SLD7000 MALS detector and Shodex RI-101 differential refractive detector. The system was preequilibrated in $20 \mathrm{~m} M$ HEPES $\mathrm{pH} 8.0,1 \mathrm{~m} M$ EDTA, $1 \mathrm{~m} M$ DTT. Samples of $100 \mu \mathrm{l}$ were loaded at concentrations of between 0.5 and $6 \mathrm{mg} \mathrm{ml}^{-1}$ and were eluted at a flow rate of $0.5 \mathrm{ml} \mathrm{min}{ }^{-1}$. The data were processed using the WinGPC UniChrom software package and a $\mathrm{d} n / \mathrm{d} c$ value of $0.186 \mathrm{ml} \mathrm{g}^{-1}$.

2.7. Steady-state kinetic and enzyme-inhibition data

AS activity was followed fluorimetrically using a 2104 EnVision Multilabel Reader (PerkinElmer) to measure the rate of appearance of anthranilate (Tamir \& Srinivasan, 1970) in black 96-well microplates (Greiner) with $\lambda_{\text {excitation }}$ of 320 nm and $\lambda_{\text {emission }}$ of 460 nm . Plots of the fluorescence versus the anthranilate concentration were linear from 0.5 to $30 \mu M$ (standard deviation of $1-5 \%$ for four replicates). Anthranilate was quantified using a coupled assay (Evans et al., 2014). Chorismate concentrations were determined from the initial and final fluorescence in assays (in quadruplicate) where chorismate was the limiting reagent. The protein concentration was determined in triplicate using a Cary 100 UV-Vis spectrophotometer and an ε_{280} of $1.0195 \mathrm{ml} \mathrm{mg}^{-1} \mathrm{~cm}^{-1}$.

Glutamine-dependent assays for determination of the apparent Michaelis-Menten constant ($K_{\mathrm{m}}^{\text {app }}$) consisted of $112 \mathrm{~m} M$ HEPES pH 8.0, $10 \mathrm{~m} M \mathrm{MgCl}_{2}, 0.056 \mathrm{mg} \mathrm{ml}^{-1} M t b-$ AS and varying concentrations of chorismate (3.7-118 μM) in $375 \mu \mathrm{l}$ with a constant glutamine concentration $(12 \mathrm{mM})$. The
$K_{\mathrm{m}}^{\text {app }}$ value for chorismate was obtained by nonlinear fitting to the Michaelis-Menten equation using GraphPad Prism (v.5.02; GraphPad Software, La Jolla, California, USA).

For determination of the IC_{50}, the glutamine-dependent assays were the same but with $M t b-A S$ and chorismate at concentrations of $0.075 \mathrm{mg} \mathrm{ml}^{-1}$ and $29 \mu M$, respectively, in $300 \mu \mathrm{l}$. All components except for chorismate and $M t b-\mathrm{AS}$ were thermally equilibrated at $25^{\circ} \mathrm{C}$ for $5-15 \mathrm{~min}$ and the reaction was initiated by the addition of chorismate. Inhibitors were dissolved in DMSO and their concentrations were determined by ${ }^{1} \mathrm{H}$-NMR. In situ twofold serial dilutions (with thorough mixing in each well) gave final inhibitor concentrations from 0.08 to $4600 \mu M$. For control reactions, DMSO was added without inhibitor over the same dilution range and had no measurable effect on enzyme activity. The IC_{50} values were determined as described in Evans et al. (2014), but with the max and min variables constrained to be 1 and 0 , respectively. The Hill coefficient was unconstrained for methyl-AMT (Manos-Turvey et al., 2010) and Trp data sets and was taken as 1 for the other inhibitors, assuming competitive inhibition. The assumption that the inhibitors are competitive is consistent with the structure of $M t b$-AS-I, which shows the inhibitor bound in the active site. Furthermore, steady-state kinetic analysis of the AMT-series inhibitors against Sma-AS showed them to be competitive (Manos-Turvey et al., 2010).

3. Results and discussion

3.1. Identification of the trpG ORF

Nine ORFs with predicted GAT activity are annotated in the $M t b$ genome. Of these, five are fused genes that encode

Figure 2
Analyses of $M t b-A S$ and its subunits. (a) SDS-PAGE gel of the purified $M t b-A S$ complex showing bands at $\sim 54 \mathrm{kDa}$ for the AS-I subunit and $\sim 23 \mathrm{kDa}$ for AS-II. Lane M contains molecular-mass markers (labelled in kDa). (b) SEC trace of the $M t b-\mathrm{AS}$ complex, showing refractive-index (continuous line) and weight-averaged molecular-mass (darker line) data. The calculated molecular mass is substantially different across the elution peak, indicated by the sharp slope of the molecular-mass trace across the peak. (c) SEC trace of Mtb-AS-I alone, shown for comparison and plotted as for (b). The protein runs predominantly as an AS-I-AS-I dimer. The estimated molecular mass for the small monomer population is also shown. In both (b) and (c) data are shown for one concentration of protein for clarity.
large multidomain proteins, which are unlikely to be the AS-II component. Sequence comparisons of the four remaining GAT gene candidates (Rv0013, Rv0788, Rv1602 and Rv2604c) with two $\operatorname{trp} G$ genes from unrelated species (Sma-AS-II and Sso-AS-II) showed the conservation of key regions, including residues in the catalytic triad and oxyanion hole, indicative of class I GATs (Mouilleron \& Golinelli-Pimpaneau, 2007; Raushel et al., 1999). Of these four candidates, Rv0013 shares $38-40 \%$ sequence identity with Sma-AS-II and Sso-AS-II, compared with $\sim 18 \%$ for the next closest candidate (Rv1602).

Rv0788, Rv1602 and Rv2604c were expressed as individual proteins in soluble form, but showed no evidence of complex formation with AS-I. Likewise, co-expression of these proteins with AS-I in M. smegmatis host cells gave no AS complex formation. Attempts to express and purify Rv0013 on its own were unsuccessful, but a soluble putative AS complex was obtained when it was co-expressed with Mtb-AS-I. This complex was then purified by IMAC using the His_{6} tag on AS-I; the untagged Rv0013 co-purified with AS-I (Fig. 2a), suggesting stable complex formation. Further purification by SEC resulted in a single peak, and mass spectrometry confirmed the presence and identity of both AS-I and Rv0013 proteins. From these experiments and its strong sequence similarity to other AS-II proteins, we identify Rv0013 as the AS-II protein in Mtb.

SEC-MALS analysis of the complex (Fig. 2b) indicated a range of M_{r} values across the peak, covering M_{r} values from ~ 108 to 140 kDa rather than a single defined species. In contrast, the same analysis for AS-I alone (Fig. 2c) showed a

Figure 3

- (a)
much sharper peak corresponding to a dimer M_{r} of 108 kDa . The trace for the AS complex could thus encompass species ranging from the AS-I dimer (108 kDa) to complexes with one or two AS-II subunits (25 kDa each) bound to an AS-I dimer. We conclude that the AS complex sample also contains some uncomplexed AS-I present in solution. The AS complex is evidently stable, however, since no dissociation of AS-II was observed with SEC, with added salt (up to 1.0 M) or glycerol (up to 5%) or when the sample injected contained the methylAMT inhibitor ($1 \mathrm{~m} M$).

3.2. Functional characterization of the AS complex

To further characterize the Mtb-AS complex, its ability to catalyse the conversion of chorismate to anthranilate was tested. The complex catalysed the conversion of chorismate to anthranilate using glutamine as a nitrogen source, demonstrating that Rv0013 has GAT activity and that its complex with $M t b-A S-I$ is the authentic $M t b-A S$ complex. In contrast, the purified $M t b-A S-I$ on its own has no GAT activity and catalysed this reaction only in the presence of added ammonia. The glutamine-dependent activity of the $M t b$-AS complex was found to be proportional to the amount of the enzyme complex, indicating that the oligomeric state did not change, or affect enzyme activity, over the concentration range used: $0.0044-0.087 \mathrm{mg} \mathrm{ml}^{-1}$ (data not shown).

The apparent Michaelis-Menten constant ($K_{\mathrm{m}}^{\mathrm{app}}$) of $M t b-\mathrm{AS}$ for chorismate was determined to be $15 \pm 2 \mu M$ (Fig. 3a). This value is larger than the previously determined value for Mtb-AS-I of $7 \mu M$ (Lin et al., 2009) and the values for Sma-AS and

Enzymatic activity of Mtb-AS with varying concentrations of the substrate chorismate and in the presence of the allosteric inhibitor Trp. (a) Initial rates of anthranilate production were determined for different chorismate concentrations and were fitted to the Michaelis-Menten equation. $K_{\mathrm{m}}^{\text {app }}$ for chorismate was determined to be $15 \pm 2 \mu M$, with a $V_{\max }$ of $10.4 \pm 0.4 \mu M \mathrm{~min}^{-1}$. A k_{cat} of $0.26 \pm 0.01 \mathrm{~s}^{-1}$ can also be determined; however, the calculation involves the assumption that AS-I and AS-II are in a $1: 1$ or a $2: 2$ stoichometry; thus, this value may be inaccurate. (b) A dose-response curve comparing initial rates at various concentrations of Trp was fitted to determine a Hill coefficient of 2.1 ± 0.1 and an IC_{50} value of $6.3 \pm 0.2 \mu M$. The error bars show the range of values for data points measured in duplicate.

Sty-AS (of 4.7 ± 0.8 and $3.9 \pm 0.2 \mu M$, respectively) determined under similar conditions (i.e. saturating concentrations of Mg^{2+} and glutamine; Manos-Turvey et al., 2010; Ziebart et al., 2010). However, the $K_{\mathrm{m}}^{\mathrm{app}}$ for Mtb-AS is lower than the values found for some plant AS enzymes (70-180 μM; Bernasconi et al., 1994; Poulsen et al., 1993) and can be considered to be a reasonable value for a bacterial AS.

The pathway end product, Trp, was found to inhibit Mtb-AS activity (Fig. 3b), as previously shown for Mtb-AS-I (Lin et al., 2009). A Hill coefficient of 2 was calculated at chorismate concentrations near the $K_{\mathrm{m}}^{\text {app }}$ (Fig. $3 b$) and at higher concentrations, indicating positive cooperativity. Similar Hill coefficients have been reported for a heterotetrameric plant AS (Bernasconi et al., 1994; Poulsen et al., 1993). Cooperative Trp inhibition is also seen for Sma-AS and Sty-AS, which oligomerize via AS-I dimers (Morollo \& Eck, 2001; Spraggon et al., 2001). Our result suggests that $M t b$-AS also oligomerizes through interactions between its AS-I subunits.

The AS-I monomer has an α / β fold, the core of which is a twisted β-sandwich formed by two orthogonal, antiparallel β-sheets built from 24β-strands. This all- β core is surrounded by 14 helices (11α-helices and three 3_{10}-helices; Fig. $4 a$), giving an overall fold that is topologically similar to other chorismate-utilizing enzymes (CUEs) of known structure. The structure is best described in terms of two subdomains, I and II (Knöchel et al., 1999; Spraggon et al., 2001), with each subdomain forming one side of the β-sandwich core (Fig. 4a). Subdomain I comprises residues 1-73, 163-306 and 459-511, and the rest of the residues belong to the other subdomain. The active site, which contains the methyl-AMT inhibitor, is located in a cleft between the subdomains, whereas the allosteric site is located $18 \AA$ away within the β-sandwich core, as inferred from comparisons with homologous AS enzymes (Spraggon et al., 2001; Morollo \& Eck, 2001).

A search of the Protein Data Bank (PDB) using SSM (Krissinel \& Henrick, 2004) shows that the best matches to

3.3. Structure of the AS-I subunit

Diffracting crystals were obtained from solutions of both $M t b-A S-I$ and the $M t b-A S$ complex, in each case in the presence of the inhibitor methylAMT. Our initial structure, of Mtb-AS-I alone, was only determined at moderate resolution ($2.6 \AA$), but could be used as a molecular-replacement model for the best diffracting $M t b$-AS complex crystal. It was immediately apparent that the putative Mtb-AS crystals, which were isomorphous with the Mtb-AS-I crystals, contained no density corresponding to the Mtb-AS-II subunit, suggesting that it was either absent from the crystal or spatially disordered. Since the Mtb-AS-I structures obtained in the two cases are essentially identical, the higher resolution structure, refined at $2.1 \AA$ resolution with a crystallographic $R=20.1 \%$ and $R_{\text {free }}=25.3 \%$ (Table 1), is presented here. One molecule of $M t b$-AS-I is present in the asymmetric unit, with a solvent content of 69.7%. The final model includes residues 3511, except for residues 116-119, for which no interpretable electron density was observed. These residues are located on the protein surface, remote from crystal contacts.

Three-dimensional structure of $M t b-A S-I$. (a) The $M t b-A S-I$ protomer, with subdomain I coloured blue and subdomain II pink. The methyl-AMT inhibitor, shown in space-filling mode, is located in the active-site cleft between the two subdomains. Below it, some $\sim 20 \AA$ away, is the allosteric Trp site (indicated with an arrow) identified by analogy with other AS enzyme structures. (b) Structure of Mtb-AS-I dimer with the two subunits coloured blue and green. The blue subunit is also shown in a transparent surface representation. (c) Stereoview of the $M t b$-AS-I dimer (blue C^{α} trace) superimposed on the Sma-AS-I dimer (orange C^{α} trace) to highlight the different mode of dimerization. The two subunits in each AS-I dimer are coloured in different shades for clarity. Note that the viewing angle is different from that in (b) to show the different dimer interface more clearly. Also shown is the binding site for one of the two AS-II subunits in Sma-AS (magenta, transparent surface) showing that it is far removed from the new AS-I dimer interface in Mtb-AS. This demonstrates that the same AS-I-AS-II interaction is possible in Mtb-AS. (For clarity, the second AS-II subunit in Sma-AS is not shown, but by symmetry would be equally far removed from the new AS-I dimer interface.)

Mtb-AS-I are the three other structurally characterized AS-I subunits from AS complexes (Knöchel et al., 1999; Morollo \& Eck, 2001; Spraggon et al., 2001), followed by CUEs from the folate (Parsons et al., 2002; Bera et al., 2012), phenazine (Li et al., 2011), enterobactin (Kerbarh et al., 2006) and mycobactin (Harrison et al., 2006; Zwahlen et al., 2007) biosynthetic pathways. Root-mean-square differences (r.m.s.d.s) in C^{α} positions range from 1.47 to $2.42 \AA$, highlighting the conservation of the core fold within this family of proteins. As has been noted before (Parsons et al., 2002), most of the variations in different CUEs, in structure and in sequence, occur in the N-terminal portion of the protein where the Tr p regulatory site is located in AS-I.

3.4. Oligomerization and identification of a novel dimer interface

Analysis of the crystal packing using PISA (Krissinel \& Henrick, 2007) indicates that the biological unit of Mtb-AS-I is a dimer (Fig. $4 b$) that buries $\sim 1788 \AA^{2}$ or 8.5% of the solventaccessible area of each subunit. This agrees with the SECMALS analysis for AS-I, which showed a 108 kDa dimer, similar to the predicted M_{r} of 112 kDa . In the crystal, the two subunits that comprise the AS-I dimer are related by a crystallographic twofold axis (Fig. 4b) and associate primarily through subdomain I (residues 3-6, 28-43, 57-65, 170-174, 206-222, 274-281 and 506-510); only one residue from subdomain II is involved.

Intriguingly, the AS-I-AS-I interface in $M t b-A S$ differs markedly from that observed in the other two mesophilic AS complexes, Sma-AS and Sty-AS (Fig. 4c), which involves more residues from subdomain II (equivalent to the region around $\alpha 7, \alpha 8, \beta 18$ and $\beta 19$ in our structure). In these two complexes the AS-I-AS-I interface is significantly smaller, burying only $725-806 \AA^{2}$ or 3.5-4\% of the solvent-accessible surface area of each monomer, and is not given high significance by PISA. The fact that this AS-I-AS-I interface is essentially the same in both Sma-AS and Sty-AS argues that it is not a crystal-packing artefact, however. Cooperative interactions within the 2:2 heterotetramers must presumably enhance oligomer stability.

The different and much more extensive AS-I-AS-I interface in $M t b-A S$ results from changes on the surface of the $M t b-$ AS-I subunit, notably in the N-terminal portion of subdomain I. In particular, a 20 -residue N -terminal extension that is not present in the other enzymes contributes significantly to each end of the interface. Interestingly, residues close to the allosteric Trp-binding site form part of the dimer interface, suggesting the possibility that Trp binding in one subunit could be signalled to the other; see $\S 3.7$.

Importantly, however, the novel AS-I-AS-I interface observed here should still allow the AS-II subunit to bind at the conserved site on AS-I that is utilized in all of the AS complexes characterized to date (Fig. 4c); there appear to be no steric clashes that would prevent this. Nevertheless, it is possible that stronger AS-I-AS-I association in the Mtb-AS complex may be linked to more facile dissociation of the AS-II subunits.

To confirm that the crystallographic dimer corresponds to that existing in solution, we performed SAXS analyses on the Mtb-AS-I protein (Fig. 5). Consistent with the SEC-MALS analysis (Fig. 2b), there was no concentration dependence evident in the scattering data, and the R_{g} was also consistent at $32.6 \AA$. Comparison of the experimental SAXS scattering data with the theoretical scattering curves from the crystal structures of the $M t b-A S-I$ dimer and the Sma-AS-I dimer shows that the $M t b-A S-I$ dimer fits much better, with $\chi=0.47$ for $M t b-A S-I$ but $\chi=1.37$ for Sma-AS-I (Fig. 5). This confirms that the $M t b$-AS-I dimer seen in the crystal is the same as that in solution, and confirms that the dimer interface in Mtb-AS-I is different from those previously characterized.

The novel AS-I-AS-I dimer interface seen here fits with a pattern of variability within the wider CUE family among those enzymes that require a GAT subunit (Bera et al., 2012; Parsons et al., 2002). For example, the CUE from the folatebiosynthetic pathway in E. coli is a heterodimer involving a GAT subunit that can associate or dissociate under certain conditions (Roux \& Walsh, 1992; Rayl et al., 1996). In the AS subfamily, the AS-I-AS-II heterodimer interface is largely conserved between Sso-AS, Sma-AS and Sty-AS (Fig. 4d), but the quaternary structure differs (Morollo \& Eck, 2001). In Sso-AS, dimerization occurs through AS-II and the AS-I subunits do not associate, whereas for Sma-AS and Sty-AS dimerization occurs through a relatively small AS-I-AS-I interface that differs from that seen here.

Analysis of the Mtb-AS-I crystal packing indicates that part of the expected binding face for $M t b-\mathrm{AS}-\mathrm{II}$, based on homologous structures, is involved in crystal contacts. Thus, even

Figure 5
SAXS analyses of Mtb-AS-I protein. SAXS data are plotted against scattering angle and are compared with the CRYSOL-generated theoretical scattering (red line) obtained for our Mtb-AS-I crystal structure. The fitting has a χ value of 0.47 . Also shown (black line) is the theoretical scattering curve for the different dimer seen for Sma-AS-I, which fits much less well $(\chi=1.37)$. The inset shows the Guinier plot, in which the experimental SAXS intensity data are plotted against scattering angle over a range of concentrations [from $3 \mathrm{mg} \mathrm{ml}^{-1}$ (top line) with twofold dilutions to $0.045 \mathrm{mg} \mathrm{ml}^{-1}$ at the bottom]. The radius of gyration $\left(R_{\mathrm{g}}\right)$ is consistent at $32.6 \AA$ over the concentration range.
though this crystal form had a high solvent content (69.7\%) the AS-II subunits could not be accommodated in it. We conclude that the absence of AS-II from the crystal structure is owing to selective crystallization of AS-I arising either from the presence of some uncomplexed AS-I in the AS protein solution or to dissociation of the complex during crystallization.

3.5. Active site and methyl-AMT binding

The active site of Mtb-AS-I is located in a deep, solventfilled funnel between the two subdomains (Fig. 4a) and is highly conserved when compared with the other AS-I (TrpE) structures (Spraggon et al., 2001; Morollo \& Eck, 2001; Knöchel et al., 1999). AS-I active sites are inherently flexible, enabling closure over a bound substrate or the stabilization

of a more open structure when Tr is bound as an allosteric inhibitor (Spraggon et al., 2001; Morollo \& Eck, 2001). Our present Mtb-AS-I structure corresponds to the closed form, consistent with the fact that the methyl-AMT inhibitor is bound in the active site. The active site is not fully formed, however, as the inhibitor displaces several side chains and no Mg^{2+} ion is bound. Mg^{2+} binding appears to be dependent on the presence of the carboxyl group of chorismate, or an analogue, and in Mtb-AS-I the residues expected to complete the Mg^{2+} site, Glu351 and Glu488, have moved away relative to the equivalent residues in Sma-AS (Spraggon et al., 2001).

The methyl-AMT inhibitor is bound as its Z-isomer, with its aromatic ring sandwiched between the side chains of the conserved Lys 492 , with which it makes an $\mathrm{N}-\mathrm{H} \cdots \pi$ interaction, and Ile 458 (Figs. $6 a$ and $6 b$). As was also the case for its binding to Mtb-SS (Chi et al., 2012), the inhibitor is flipped

Figure 6
$M t b-A S-I$ active site and binding of the methyl-AMT inhibitor. (a) Methyl-AMT (yellow) binding in the Mtb-AS-I active site (blue) with $2 F_{\mathrm{o}}-F_{\mathrm{c}}$ OMIT map (grey) contoured at 1.0σ. Water molecules making direct hydrogen bonds (black dashed lines) to methyl-AMT are shown as red spheres. The side chain of Ile458 packs directly below the aromatic ring of the inhibitor but is omitted for clarity. (b) Schematic representation of methyl-AMT binding in the active site with nearby residues shown as spheres. The residues that form hydrogen bonds directly to the inhibitor (cyan), via side-chain interactions (green lines) or via backbone (blue lines) are displayed. Acidic and basic amino acids are shown with red and blue outlines, respectively. (c) Superposition of the Mtb-AS-I active site (blue) on to that of Sma-AS-I (orange) indicates conservation of the residues in the active site of both proteins [residues in Sma-AS-I labelled in orange correspond to the residues in Mtb-AS-I shown in (a)]. The superposition also shows that the binding mode for methyl-AMT from Mtb-AS-I is rotated 180° with respect to benzoate (dark green) and pyruvate (light green) in the Sma-AS-I structure. (d) Superposition of active-site residues in $M t b-A S-I$ (blue) and $M t b-S S$ (wheat), indicating the conservation of active-site residues and the similar binding mode of methyl-AMT in both proteins. The methyl-AMT inhibitor is coloured the same as the protein side chains. Residues in Mtb-SS are labelled in this figure, superimposed on the $M t b$-AS-I residues identified in (a).

Table 3
Inhibition of $M t b-A S$ by isochorismate and chorismate mimics compared with the results for other chorismate-utilizing enzymes.

ND, not determined.

Inhibitor	IC_{50} for $M t b-\mathrm{AS}$ (μM)	$\begin{aligned} & K_{\mathrm{i}} \text { for } M t b-\mathrm{SS} \dagger \\ & (\mu M) \end{aligned}$	K_{i} for $\mathrm{Sma}-\mathrm{AS} \dagger$ (μM) (μM)	Decreased potency relative to methyl-AMT		
				Mtb-AS	Mtb-SS	Sma-AS
Methyl-AMT (9:1 Z / E)	17 ± 1	11 ± 1	1.1 ± 0.1			
Ethyl-AMT (10:3 $Z / E)$	25 ± 1	12 ± 2	1.7 ± 0.3	1.5-fold	1.1-fold	1.5 -fold
Phenyl-AMT (1:1 Z/E)	80 ± 5	21 ± 5	33 ± 4	5-fold	1.9-fold	30-fold
AMT	540 ± 30	240 ± 40	34 ± 6	32-fold	22-fold	30-fold
2-Deoxy-AMT	420 ± 50	500 ± 90	3.2 ± 0.3	25-fold	46-fold	2.9-fold
GBS-1	2200 ± 300	1400 ± 400	28 ± 7	140-fold	130-fold	26-fold
GBS-2	>2000	3000 ± 1000	90 ± 14	ND	270-fold	82-fold

\dagger Data from Manos-Turvey et al. (2010).
almost 180° relative to the orientation predicted for the ADIC intermediate by analogy with the binding modes for benzoate and pyruvate in Sma-AS-I (Spraggon et al., 2001; Fig. 6c). Thus, the salicylate-like portion of methyl-AMT sits between Tyr439 and Arg459, residues that bind the enol-pyruvate moiety in Sma-AS-I, and the enol-pyruvyl group of methylAMT is oriented towards the opening of the active site, in a position close to where the anthranilate-like component of ADIC is predicted to reside. This places it adjacent to the catalytically essential His388 (Morollo \& Bauerle, 1993) and to the site occupied by the essential Mg^{2+} ion in Sma-AS-I. The side chain of $\operatorname{Arg} 459$, which is also important for catalysis, is displaced by the methyl-AMT and no longer hydrogenbonds to His388 as in Sma-AS (Fig. 6c).

Diffracting crystals of Mtb-AS-I could only be obtained reproducibly in the presence of the most potent inhibitor of our AMT series, methyl-AMT, presumably because of the conformational movements that it induces. The structure shows that the methyl group contacts Pro306, Ile322 and Ile458 in a small hydrophobic depression. Larger substituents (i.e. those of ethyl-AMT and phenyl-AMT) could not occupy the same site without movements of the β-strands that form this part of the active-site wall, thus accounting for their twofold to fivefold lower inhibitor potency compared with methyl-AMT (Table 2) and very likely also for their failure to crystallize. Interestingly, methyl-AMT binds in exactly the same orientation in $M t b-\mathrm{SS}$, in which binding of the phenyl derivative is accommodated by movements in strands $\beta 15-\beta 17$ (Chi et al., 2012). Mtb-AS and Mtb-SS thus not only share similar core structures, with an r.m.s.d of 2.1-2.2 A for 387-393 common C^{α} atoms, but also share the same inhibitor-binding modes (Fig. 6d).

3.6. Comparative inhibition studies

AS-I belongs to a family of closely related CUEs that share a similar structure and catalytic mechanism (Kozlowski et al., 1995; Ziebart et al., 2010). Owing to the closely related activesite architecture, inhibitors of one member of this enzyme family can also inhibit other family members (Kozlowski et al., 1995; Manos-Turvey et al., 2010; Payne et al., 2009; Walsh et al.,

1987; Ziebart et al., 2010). Isochorismate is the intermediate in the reaction catalysed by salicylate synthase (SS; Kerbarh, Ciulli et al., 2005) and is structurally similar to the intermediate of the AS-catalysed reaction, ADIC (Fig. 1b). We previously developed isochorismate mimetics (AMT series; Fig. 1) and chorismate mimetics [e.g. 2-deoxyAMT, gallate-based synthesis (GBS) series; Fig. 1] as inhibitors of Mtb-SS (Manos-Turvey et al., 2010) and found that these compounds also inhibit Sma-AS (Manos-Turvey et al., 2010). To establish their inhibitory properties against Mtb-AS and draw comparisons with SmaAS and Mtb-SS, we determined the IC_{50} values for a subset of these inhibitors (Table 3). Interestingly, comparison of the trends from values in our previous results obtained for Mtb-SS showed a strong correlation despite the differences in the catalysed reaction.

The compounds AMT, 2-deoxy-AMT, GBS-1 and GBS-2 are relatively potent inhibitors of $\operatorname{Sma}-\mathrm{AS}\left(K_{\mathrm{i}}\right.$ values of 3$90 \mu M$), but are only modest inhibitors of $M t b-$ SS (K_{i} values of $240-3000 \mu M$; Manos-Turvey et al., 2010). The IC_{50} values (Table 3) identify these as similarly modest inhibitors of $M t b$ AS. The most potent $M t b$-AS inhibitor of the AMT series is methyl-AMT, with an IC_{50} value of $17 \pm 1 \mu M$ and a Hill coefficient of 1.0 ± 0.4 (indicating noncooperative inhibition). The potency of ethyl-AMT and phenyl-AMT against $M t b-A S$ is twofold to fivefold lower than that of methyl-AMT (Table 3). In the case of $M t b-\mathrm{SS}$, which is monomeric, the small changes in potency between methyl-AMT and phenyl-AMT (Table 3) are attributed to active-site flexibility (Chi et al., 2012). In Sma-AS, however, the part of the enzyme that has to move to accommodate the phenyl moiety of phenyl-AMT is engaged in the AS-I dimer interface, explaining its much lower potency (Chi et al., 2012). The similar behaviour for Mtb-AS and $M t b-\mathrm{SS}$, but the differences from Sma-AS, are consistent with the fact that in Mtb-AS the AS-I-AS-I dimer interface differs from that of Sma-AS.

3.7. Allosteric inhibition by Trp

The amino-acid sequence of $M t b$-AS-I contains Trp-binding motifs in subdomain I (LLES $X_{10} \mathrm{~S}$ at residues 53-67 and NPSPYMY at residues 280-286) that correspond to those in homologous enzymes, supporting our observation of allosteric control by Trp (Fig. 3b). In both Sma-AS and Sty-AS the cooperativity of allosteric inhibition by Trp arises because structural elements that interact across the AS-I-AS-I interface belong to secondary structures that also help form the active site (Spraggon et al., 2001; Morollo \& Eck, 2001). How, then, is cooperative inhibition by Trp achieved in Mtb-AS, given that it has a completely different AS-I-AS-I interface?

Figure 7
Mtb-AS-I allosteric site and proposed structural basis of cooperative allosteric inhibition by Trp. Stereoview of the Mtb-AS-I dimer interface around the allosteric binding site. The two monomers are shown as blue and green cartoon models, with the corresponding residues shown in ball-and-stick mode. The two allosteric motifs are shown in red (residues 53-67) and blue (residues 280-286) in the two monomers. Hydrogen bonds are shown as black dashed lines.

Our structure suggests that residues from the first allosteric loop region (residues 57-65) play a key part, as they approach each other at the interface (Fig. 7). Two histidine residues that are buried at the interface, His170 and His171, interact with allosteric loop residues (Ala60, Trp63 and Arg65) from either their own or the adjacent subunit, forming hydrogen bonds: His170 NH \cdots Arg65 O ($2.8 \AA$ Å), His171 NH \cdots Asp169 OD1 (2.9 $\AA)$, His171 O ...Trp63 NE1 (3.0 Å), His171 NE2... Gly60 O ($2.8 \AA$) and His171 ND1 $\cdots \operatorname{Arg65NH1~(3.1~\AA).~}$ His170 also stacks against its symmetry mate, His170', from the other monomer (Fig. 7). Beyond this residue, Asp169 stabilizes the turn containing His170 and His171 through multiple hydrogen bonds as well as by forming a salt bridge with $\operatorname{Arg} 65(2.8 \AA)$. Upon productive $\operatorname{Tr} p$ binding to one subunit, the conformation of this allosteric loop is likely to change, by analogy with the changes seen in homologous AS enzymes, and this would very likely alter the hydrogenbonding patterns across the interface.

4. Conclusions

The Trp-biosynthesis pathway is of particular significance in $M t b$ as a target for new drugs that operate through a novel mechanism of action compared with current therapies. This is underscored by the report that fluorinated anthranilate analogues are effective at killing $M t b$ in a mouse model of disease, apparently through Trp starvation (Zhang et al., 2013). This is likely to be associated with their turnover by the second enzyme in the pathway, Mtb-AnPRT (Cookson et al., 2014). We are currently pursuing a rational drug-design approach for Mtb-AnPRT (Castell et al., 2013; Evans et al., 2014). In order to more fully characterize the Trp-biosynthesis pathway in $M t b$, we have here used functional and structural studies to characterize the first committed step in Trp biosynthesis, which is catalysed by the AS complex. Our results indicate that the protein encoded by open reading frame Rv0013 is the amidotransferase (AS-II) component of anthranilate synthase
in $M t b$, forming a functional AS complex with AS-I and providing ammonia through glutamine hydrolysis. Attempts to crystallize the AS complex only gave crystals of its ASI subunit, probably owing to its preferential crystallization from a solution containing both AS and AS-I.

Interestingly, the crystal structure of $M t b$ -AS-I revealed a dimer interface different from that observed for other AS complex enzymes, although this different dimer still supports cooperative allosteric AS inhibition by Trp and allows formation of the full $M t b-A S$ complex. Inhibitor potency trends against $M t b$-AS did not correlate with those observed for Sma-AS, most likely because the flexibility in the active site of $M t b-\mathrm{AS}$ is changed owing to its different AS-I dimer interface. We predict that inhibitors developed against a particular AS complex (e.g.
Sma-AS or Sty-AS) would not necessarily be as potent against other AS enzymes (e.g. Sso-AS), owing to the difference in their oligomeric association and dimer interface.

The potential to design a single CUE inhibitor to target multiple essential biosynthetic pathways has been proposed by several research groups (Walsh et al., 1987; Kozlowski et al., 1995). Chorismate is the branch point for pathways leading to various essential compounds, including the aromatic amino acids, folate and siderophores (enterobactin and mycobactin). This 'magic shotgun' rather than 'magic bullet' approach has been growing in popularity and acceptance in recent years (Roth et al., 2004; Morphy \& Rankovic, 2005). Here, we demonstrate the potential for an inhibitor to target multiple CUEs in $M t b$, since the compounds we tested had similar potency trends against $M t b$-AS as they did against $M t b-\mathrm{SS}$ (Manos-Turvey et al., 2010). Furthermore, we observe that the most potent of these inhibitors, methyl-AMT, has an identical mode of binding to both enzymes (Chi et al., 2012).

Acknowledgements

We thank Drs Mike Herbert and Chris Squire for help with SAXS and X-ray data collection, respectively, both of which were performed at the Australian Synchrotron. We thank Mr Martin Middleditch for mass spectrometry, which was performed at the Centre for Genomics, Proteomics and Metabolomics at the University of Auckland. This work was supported by research grants from the Health Research Council of New Zealand and Ministry of Business, Innovation and Employment of New Zealand. Access to the Australian Synchrotron was supported by the New Zealand Synchrotron Group.

References

Ashenafi, M., Carrington, R., Collins, A. C. \& Byrnes, W. M. (2008). Ethn. Dis. 18, S2-9-S2-13.
Barona-Gómez, F. \& Hodgson, D. A. (2003). EMBO Rep. 4, 296-300.

Bashiri, G., Rehan, A. M., Greenwood, D. R., Dickson, J. M. \& Baker, E. N. (2010). PLoS One, 5, e15803.

Bera, A. K., Atanasova, V., Dhanda, A., Ladner, J. E. \& Parsons, J. F. (2012). Biochemistry, 51, 10208-10217.

Bernasconi, P., Walters, E. W., Woodworth, A. R., Siehl, D. L., Stone, T. E. \& Subramanian, M. V. (1994). Plant Physiol. 106, 353-358.

Berney, M., Berney-Meyer, L., Wong, K.-W., Chen, B., Chen, M., Kim, J., Wang, J., Harris, D., Parkhill, J., Chan, J., Wang, F. \& Jacobs, W. R. Jr (2015). Proc. Natl Acad. Sci. USA, 112, 10008-10013.
Blommel, P. G. \& Fox, B. G. (2007). Protein Expr. Purif. 55, 53-68.
Castell, A., Short, F. L., Evans, G. L., Cookson, T. V., Bulloch, E. M., Joseph, D. D., Lee, C. E., Parker, E. J., Baker, E. N. \& Lott, J. S. (2013). Biochemistry, 52, 1776-1787.

Chi, G., Manos-Turvey, A., O’Connor, P. D., Johnston, J. M., Evans, G. L., Baker, E. N., Payne, R. J., Lott, J. S. \& Bulloch, E. M. (2012). Biochemistry, 51, 4868-4879.
Cole, S. T. et al. (2001). Nature (London), 409, 1007-1011.
Cookson, T. V. M., Castell, A., Bulloch, E. M. M., Evans, G. L., Short, F. L., Baker, E. N., Lott, J. S. \& Parker, E. J. (2014). Biochem. J. 461, 87-98.
Due, A. V., Kuper, J., Geerlof, A., von Kries, J. P. \& Wilmanns, M. (2011). Proc. Natl Acad. Sci. USA, 108, 3554-3559.

Emsley, P. (2013). Advancing Methods for Biomolecular Crystallography, edited by R. J. Read, A. G. Urzhumtsev \& V. Y. Lunin, pp. 205-209. Dordrecht: Springer.
Evans, P. (2006). Acta Cryst. D62, 72-82.
Evans, G. L., Gamage, S. A., Bulloch, E. M. M., Baker, E. N., Denny, W. A. \& Lott, J. S. (2014). Chembiochem, 15, 852-864.

Harrison, A. J., Yu, M., Gårdenborg, T., Middleditch, M., Ramsay, R. J., Baker, E. N. \& Lott, J. S. (2006). J. Bacteriol. 188, 60816091.

Kabsch, W. (2010). Acta Cryst. D66, 125-132.
Karplus, P. A. \& Diederichs, K. (2012). Science, 336, 1030-1033.
Kerbarh, O., Bulloch, E. M., Payne, R. J., Sahr, T., Rébeillé, F. \& Abell, C. (2005). Biochem. Soc. Trans. 33, 763-766.
Kerbarh, O., Chirgadze, D. Y., Blundell, T. L. \& Abell, C. (2006). J. Mol. Biol. 357, 524-534.
Kerbarh, O., Ciulli, A., Howard, N. I. \& Abell, C. (2005). J. Bacteriol. 187, 5061-5066.
Knöchel, T., Ivens, A., Hester, G., Gonzalez, A., Bauerle, R., Wilmanns, M., Kirschner, K. \& Jansonius, J. N. (1999). Proc. Natl Acad. Sci. USA, 96, 9479-9484.
Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. \& Svergun, D. I. (2003). J. Appl. Cryst. 36, 1277-1282.
Kozlowski, M. C., Tom, N. J., Seto, C. T., Sefler, A. M. \& Bartlett, P. A. (1995). J. Am. Chem. Soc. 117, 2128-2140.

Krissinel, E. \& Henrick, K. (2004). Acta Cryst. D60, 2256-2268.
Krissinel, E. \& Henrick, K. (2007). J. Mol. Biol. 372, 774-797.
Langer, G., Cohen, S. X., Lamzin, V. S. \& Perrakis, A. (2008). Nature Protoc. 3, 1171-1179.
Lee, C. E., Goodfellow, C., Javid-Majd, F., Baker, E. N. \& Lott, J. S. (2006). J. Mol. Biol. 355, 784-797.

Li, Q. A., Mavrodi, D. V., Thomashow, L. S., Roessle, M. \& Blankenfeldt, W. (2011). J. Biol. Chem. 286, 18213-18221.
Lin, X., Xu, S., Yang, Y., Wu, J., Wang, H., Shen, H. \& Wang, H. (2009). Protein Expr. Purif. 64, 8-15.

Manos-Turvey, A., Bulloch, E. M., Rutledge, P. J., Baker, E. N., Lott, J. S. \& Payne, R. J. (2010). ChemMedChem, 5, 1067-1079.

McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. \& Read, R. J. (2007). J. Appl. Cryst. 40, 658-674.

Moreland, N., Ashton, R., Baker, H. M., Ivanovic, I., Patterson, S., Arcus, V. L., Baker, E. N. \& Lott, J. S. (2005). Acta Cryst. D61, 1378-1385.
Morollo, A. A. \& Bauerle, R. (1993). Proc. Natl Acad. Sci. USA, 90, 9983-9987.
Morollo, A. A. \& Eck, M. J. (2001). Nature Struct. Biol. 8, 243-247.
Morollo, A. A., Finn, M. G. \& Bauerle, R. (1993). J. Am. Chem. Soc. 115, 816-817.
Morphy, R. \& Rankovic, Z. (2005). J. Med. Chem. 48, 6523-6543.
Mouilleron, S. \& Golinelli-Pimpaneau, B. (2007). Curr. Opin. Struct. Biol. 17, 653-664.
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F. \& Vagin, A. A. (2011). Acta Cryst. D67, 355-367.
Mylonas, E. \& Svergun, D. I. (2007). J. Appl. Cryst. 40, s245-s249.
Parsons, J. F., Jensen, P. Y., Pachikara, A. S., Howard, A. J., Eisenstein, E. \& Ladner, J. E. (2002). Biochemistry, 41, 2198-2208.

Payne, R. J., Bulloch, E. M., Toscano, M. M., Jones, M. A., Kerbarh, O. \& Abell, C. (2009). Org. Biomol. Chem. 7, 2421-2429.

Poulsen, C., Bongaerts, R. J. \& Verpoorte, R. (1993). Eur. J. Biochem. 212, 431-440.
Raushel, F. M., Thoden, J. B. \& Holden, H. M. (1999). Biochemistry, 38, 7891-7899.
Rayl, E. A., Green, J. M. \& Nichols, B. P. (1996). Biochim. Biophys. Acta, 1295, 81-88.
Romero, R. M., Roberts, M. F. \& Phillipson, J. D. (1995). Phytochemistry, 39, 263-276.
Roth, B. L., Sheffler, D. J. \& Kroeze, W. K. (2004). Nature Rev. Drug Discov. 3, 353-359.
Roux, B. \& Walsh, C. T. (1992). Biochemistry, 31, 6904-6910.
Smith, D. A., Parish, T., Stoker, N. G. \& Bancroft, G. J. (2001). Infect. Imтии. 69, 1142-1150.
Spraggon, G., Kim, C., Nguyen-Huu, X., Yee, M.-C., Yanofsky, C. \& Mills, S. E. (2001). Proc. Natl Acad. Sci. USA, 98, 6021-6026.
Studier, F. W. (2005). Protein Expr. Purif. 41, 207-234.
Svergun, D. I. (1992). J. Appl. Cryst. 25, 495-503.
Svergun, D., Barberato, C. \& Koch, M. H. J. (1995). J. Appl. Cryst. 28, 768-773.
Tamir, H. \& Srinivasan, P. R. (1970). Methods Enzymol. 17, 401-406.
Walsh, C. T., Erion, M. D., Walts, A. E., Delany, J. J. \& Berchtold, G. A. (1987). Biochemistry, 26, 4734-4745.

Wang, F., Jain, P., Gulten, G., Liu, Z., Feng, Y., Ganesula, K., Motiwala, A. S., Ioerger, T. R., Alland, D., Vilchèze, C., Jacobs, W. R. Jr \& Sacchettini, J. C. (2010). Antimicrob. Agents Chemother. 54, 3776-3782.
Winn, M. D. et al. (2011). Acta Cryst. D67, 235-242.
Xie, G., Keyhani, N. O., Bonner, C. A. \& Jensen, R. A. (2003). Microbiol. Mol. Biol. Rev. 67, 303-342.
Zhang, Y. J., Reddy, M. C., Ioerger, T. R., Rothchild, A. C., Dartois, V., Schuster, B. M., Trauner, A., Wallis, D., Galaviz, S., Huttenhower, C., Sacchettini, J. C., Behar, S. M. \& Rubin, E. J. (2013). Cell, 155, 1296-1308.

Zhang, Y. J. \& Rubin, E. J. (2013). Cell. Microbiol. 15, 1079-1087.
Ziebart, K. T., Dixon, S. M., Avila, B., El-Badri, M. H., Guggenheim, K. G., Kurth, M. J. \& Toney, M. D. (2010). J. Med. Chem. 53, 37183729.

Zumla, A., Nahid, P. \& Cole, S. T. (2013). Nature Rev. Drug Discov. 12, 388-404.
Zwahlen, J., Kolappan, S., Zhou, R., Kisker, C. \& Tonge, P. J. (2007). Biochemistry, 46, 954-964.

